

Вебинар-консультация № 1 Метод «Хорошего и плохого корня» Критерии оценивания заданий с параметрами

спикер : E.O. Новикова, ст. преподаватель кафедры общего образования ЦНППМПР

$$\sqrt{1 - 4x} \cdot \ln(9x^2 - a^2) = \sqrt{1 - 4x} \cdot \ln(3x + a)$$

имеет ровно один корень.

Метод «Хорошего и плохого корня»

хороший корень – удовлетворяет ОДЗ и условиям задачи плохой корень – не удовлетворяет ОДЗ и условиям задачи

План решения:

- I. Найти корни
- II. Рассмотреть случаи:

1 случай: x_1 — хороший, x_2 — плохой;

2 случай: $x_1 -$ плохой, $x_2 -$ хороший;

Совпадение

$$\sqrt{1-4x} \cdot \ln(9x^2 - a^2) = \sqrt{1-4x} \cdot \ln(3x+a)$$

$$\sqrt{1 - 4x} \left(\ln \frac{9x^2 - a^2}{3x + a} \right) = 0$$

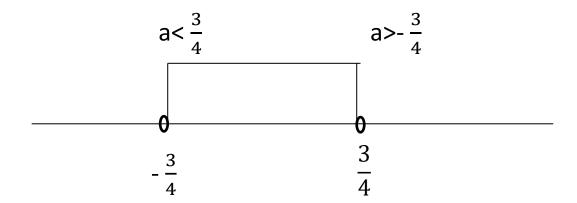
$$\sqrt{1 - 4x} \left(\ln \frac{(3x - a)(3x + a)}{3x + a} \right) = 0$$

$$\begin{cases} 1 - 4x = 0 \\ 3x - a > 0 \\ 3x + a > 0 \end{cases}$$
$$\begin{cases} \ln(3x - a) = 0 \\ 1 - 4x \ge 0 \\ 3x + a > 0 \end{cases}$$

$$\sqrt{1-4x} \cdot \ln(9x^2-a^2) = \sqrt{1-4x} \cdot \ln(3x+a)$$

$$\begin{cases} 1 - 4x = 0 \\ 3x - a > 0 \\ 3x + a > 0 \end{cases}$$

$$X=\frac{1}{4}$$
; $\frac{3}{4}-a>0$; $\frac{3}{4}+a>0$

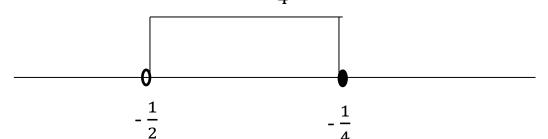


 $x_1 -$ хороший, при $-\frac{3}{4} < a < \frac{3}{4}$

$$\sqrt{1-4x} \cdot \ln(9x^2-a^2) = \sqrt{1-4x} \cdot \ln(3x+a)$$

$$\begin{cases} \ln(3x - a) = 0\\ 1 - 4x \ge 0\\ 3x + a > 0 \end{cases}$$

$$3x-a=1;$$
 $1-\frac{4(a+1)}{3} \ge 0;$ $\frac{3(a+1)}{3} + a > 0$



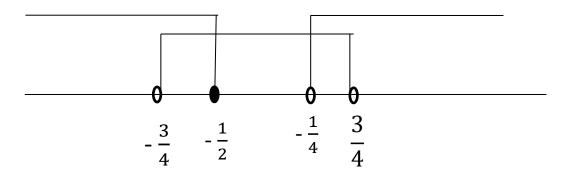
 x_2 - хороший, при $-\frac{1}{2} < a \le -\frac{1}{4}$

$$\sqrt{1-4x} \cdot \ln(9x^2 - a^2) = \sqrt{1-4x} \cdot \ln(3x+a)$$

$$x_1$$
 — хороший, при $-\frac{3}{4} < a < \frac{3}{4}$

$$x_2$$
 - хороший, при $-\frac{1}{2} < a \le -\frac{1}{4}$

1 случай: x_1 — хороший, x_2 — плохой



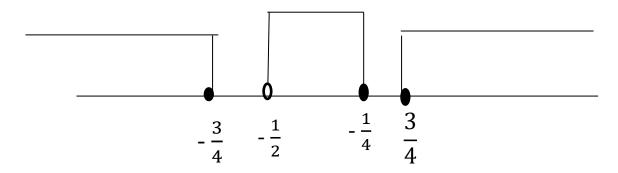
$$a \in \left(-\frac{3}{4}; -\frac{1}{2}\right] \cup \left(-\frac{1}{4}; \frac{3}{4}\right)$$

$$\sqrt{1-4x} \cdot \ln(9x^2 - a^2) = \sqrt{1-4x} \cdot \ln(3x+a)$$

$$x_1 -$$
хороший, при $-\frac{3}{4} < a < \frac{3}{4}$

$$x_2$$
 - хороший, при $-\frac{1}{2} < a \le -\frac{1}{4}$

2 случай: $x_1 -$ плохой, $x_2 -$ хороший



a ∈ Ø

$$\sqrt{1-4x} \cdot \ln(9x^2 - a^2) = \sqrt{1-4x} \cdot \ln(3x+a)$$

$$x_1 -$$
хороший, при $-\frac{3}{4} < a < \frac{3}{4}$

$$x_2$$
 - хороший, при $-\frac{1}{2} < a \le -\frac{1}{4}$

3 случай: x_1 и x_2 — хорошие и совпадают

$$\frac{a+1}{3} = \frac{1}{4}$$

$$a = -\frac{1}{4}$$
 подходит
$$-\frac{3}{4} - \frac{1}{2} - \frac{1}{4} \frac{3}{4}$$

$$\sqrt{1-4x} \cdot \ln(9x^2 - a^2) = \sqrt{1-4x} \cdot \ln(3x+a)$$

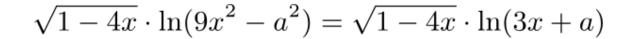
имеет ровно один корень.

1 случай:
$$a \in \left(-\frac{3}{4}; -\frac{1}{2}\right] \cup \left(-\frac{1}{4}; \frac{3}{4}\right)$$

2 случай: Ø

3 случай:
$$a = -\frac{1}{4}$$

Otbet:
$$a \in \left(-\frac{3}{4}; -\frac{1}{2}\right] \cup \left[-\frac{1}{4}; \frac{3}{4}\right)$$



имеет ровно один корень.

Содержание критерия	Балл
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено	3
множество значений a , отличающееся от	
искомого конечным числом точек	
С помощью верного рассуждения получены	2
все граничные точки искомого множества	
значений а	
Верно найдена хотя бы одна граничная	1
точка искомого множества значений а	
Решение не соответствует ни одному из	0
критериев, перечисленных выше	
Максимальный балл	4

$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

имеет ровно один корень на отрезке [0; 3].

План решения

- І. Найти хорошие корни
- II. Рассмотреть случаи:

1 случай: x_1 — хороший, x_2 — плохой, x_3 — плохой

2 случай: x_1 – плохой, x_2 – хороший, x_3 – плохой

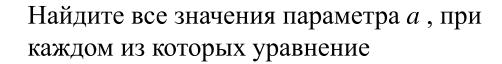
3 случай: $x_1 -$ плохой, $x_2 -$ плохой , $x_3 -$ хороший

Совпадение

4 случай: $x_1 = x_2$ - хорошие и совпадают, x_3 — плохой

5 случай: $x_1 = x_3$ - хорошие и совпадают, x_2 - плохой

6 случай: $x_2 = x_3$ - хорошие и совпадают, x_1 — хороший



$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

$$\begin{cases} 5x - 3 = 0 \\ x^2 - 6x + 10 - a^2 \ge 0 \end{cases}$$
$$\begin{cases} x^2 - 6x + 10 - a^2 - 1 = 0 \\ 5x - 3 \ge 0 \end{cases}$$

$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

$$\begin{cases} 5x - 3 = 0 \\ x^2 - 6x + 10 - a^2 \ge 0 \end{cases}$$

$$5x-3=0$$

$$x_{1} = \frac{3}{5}$$

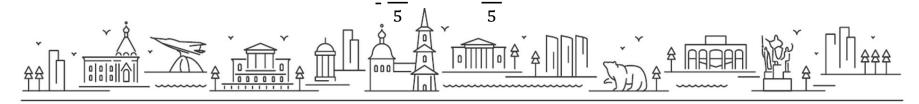
$$\frac{3}{5} \in [0; 3]$$

$$\frac{9}{25} - \frac{18}{5} + 10 - a^{2} > 0$$

$$\frac{9 - 90 + 250}{25} - a^{2} > 0$$

$$\frac{169}{25} - a^{2} > 0$$

$$x_1 -$$
хороший, при $-\frac{13}{5} < a < \frac{13}{5}$



$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

$$\begin{cases} x^2 - 6x + 10 - a^2 - 1 = 0 \\ 5x - 3 \ge 0 \end{cases}$$

1.
$$x^2 - 6x + 10 - a^2 - 1 = 0$$

 $D = 36 - 4(9 - a^2) = 36 - 36 + 4a^2 = 4a^2$

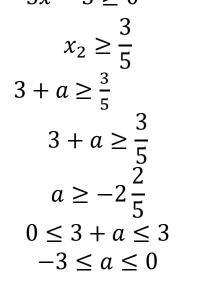
$$x_{1,2} = \frac{6 \pm 2a}{2}$$

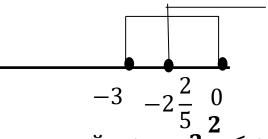
$$x_2 = \frac{6 + 2a}{2} = 3 + a$$

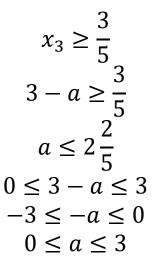
$$x_3 = \frac{6 - 2a}{2} = 3 - a$$

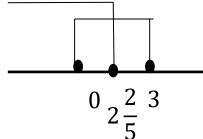
$$2. x \ge \frac{3}{5}$$

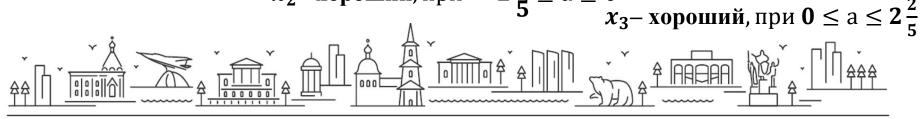
$$3. x \in [0; 3]$$









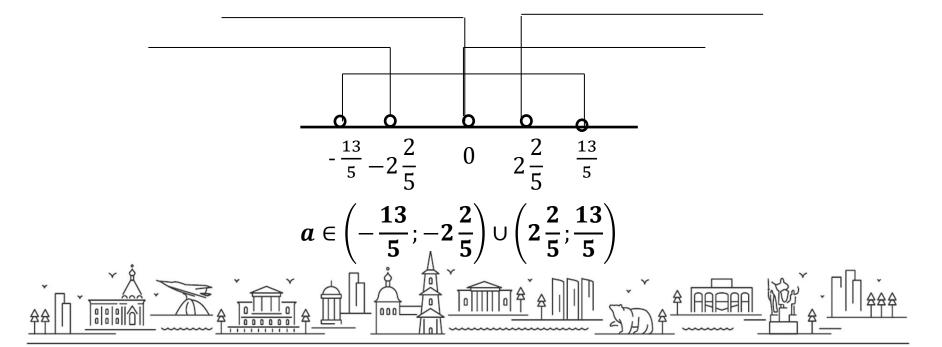


$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

имеет ровно один корень на отрезке [0; 3].

$$x_1$$
 — хороший, при $-\frac{13}{5} < a < \frac{13}{5}$; x_2 — хороший, при $-2\frac{2}{5} \le a \le 0$ x_3 — хороший, при $0 \le a \le 2\frac{2}{5}$

1 случай: x_1 — хороший, x_2 — плохой, x_3 — плохой

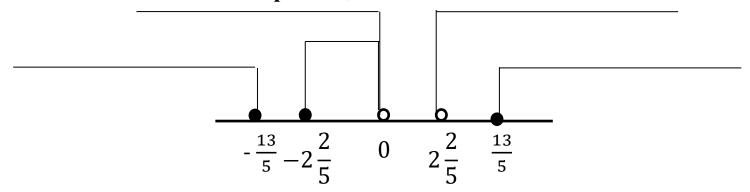


$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

имеет ровно один корень на отрезке [0; 3].

$$x_1$$
 — хороший, при $-\frac{13}{5} < a < \frac{13}{5}$; x_2 — хороший, при $-2\frac{2}{5} \le a \le 0$ x_3 — хороший, при $0 \le a \le 2\frac{2}{5}$

2 случай: x_1 – плохой, x_2 – хороший, x_3 – плохой



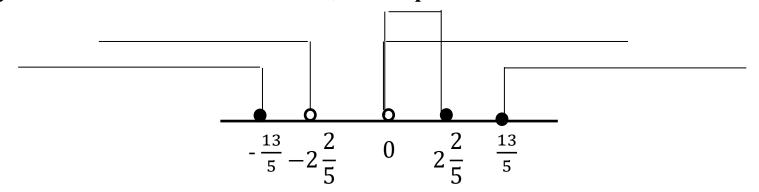
a ϵ Ø

$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

имеет ровно один корень на отрезке [0; 3].

$$x_1$$
 — хороший, при $-\frac{13}{5} < a < \frac{13}{5}$; x_2 — хороший, при $-2\frac{2}{5} \le a \le 0$ x_3 — хороший, при $0 \le a \le 2\frac{2}{5}$

3 случай: x_1 — плохой, x_2 — плохой, x_3 — хороший



a ϵ Ø

$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

имеет ровно один корень на отрезке [0; 3].

$$x_1 -$$
хороший, при $-\frac{13}{5} < a < \frac{13}{5};$

$$x_2$$
– хороший, при $-2\frac{2}{5} \le a \le 0$

$$x_3$$
– хороший, при $0 \le a \le 2\frac{2}{5}$

4 случай: $x_1 = x_2$ - хорошие и совпадают, x_3 — плохой

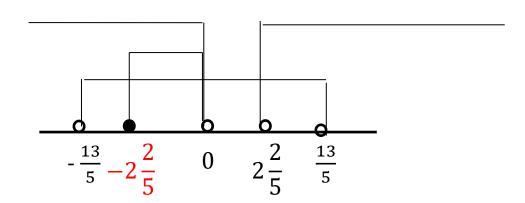
$$x_{1} = \frac{3}{5}; x_{2} = 3 + a$$

$$\frac{3}{5} = 3 + a$$

$$3 = 15 + 5a$$

$$a = \frac{3 - 15}{5}$$

$$a = -\frac{12}{5} = -2\frac{2}{5}$$



Подходит

$$a = -2\frac{2}{5}$$

$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

имеет ровно один корень на отрезке [0; 3].

$$x_1 -$$
хороший, при $-\frac{13}{5} < a < \frac{13}{5};$

$$x_2$$
— хороший, при $-2\frac{2}{5} \le a \le 0$

$$x_3$$
– хороший, при $0 \le a \le 2\frac{2}{5}$

5 случай: $x_1 = x_3$ - хорошие и совпадают, x_2 - плохой

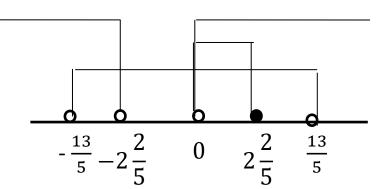
$$x_{1} = \frac{3}{5}; x_{2} = 3 - a$$

$$\frac{3}{5} = 3 - a$$

$$3 = 15 - 5a$$

$$a = \frac{3 - 15}{-5}$$

$$a = \frac{12}{5} = 2\frac{2}{5}$$



Подходит

$$a = 2\frac{2}{5}$$

$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

имеет ровно один корень на отрезке [0; 3].

$$x_1$$
 – хороший, при $-\frac{13}{5} < a < \frac{13}{5}$;

$$x_2$$
— хороший, при $-2\frac{2}{5} \le a \le 0$

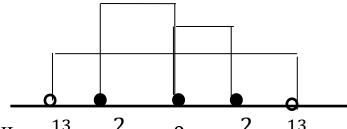
$$x_3$$
– хороший, при $0 \le a \le 2\frac{2}{5}$

6 случай: $x_2 = x_3$ - хорошие и совпадают, x_1 — хороший, тогда 2 корня

$$x_3 = 3 - a$$
; $x_2 = 3 + a$

$$3 + a = 3 - a$$

$$2a=0$$



По условие задачи 1 корень. $-\frac{13}{5} - 2\frac{2}{5}$ 0 $2\frac{2}{5}$ $\frac{13}{5}$ Делаем вывод, что

по условию задачи не подходит

$$a = 0$$

$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

имеет ровно один корень на отрезке [0; 3].

1 случай:
$$a \in \left(-\frac{13}{5}; -2\frac{2}{5}\right) \cup \left(2\frac{2}{5}; \frac{13}{5}\right)$$

2 случай: a ∈ Ø

a ∈ Ø 3 случай:

4 случай:
$$a = -2\frac{2}{5}$$

5 случай: $a = 2\frac{2}{5}$

6 случай:

Ответ:
$$a \in \left(-\frac{13}{5}; -2\frac{2}{5}\right] \cup \left[2\frac{2}{5}; \frac{13}{5}\right)$$

$$\sqrt{5x-3} \cdot \ln(x^2 - 6x + 10 - a^2) = 0$$

Otbet:
$$a \in \left(-\frac{13}{5}; -2\frac{2}{5}\right] \cup \left[2\frac{2}{5}; \frac{13}{5}\right)$$

Содержание критерия	Балл
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено	3
множество значений a , отличающееся	
включением/исключением точек $a=-rac{12}{5}$ и/	
или $a=\frac{12}{5}$	
В решении верно найдены все граничные	2
ТОЧКИ $a=-\frac{13}{5}, a=-\frac{12}{5}, a=\frac{12}{5}, a=\frac{13}{5},$ но	
неверно определены промежутки	
ИЛИ	
Верно найден хоть один из промежутков	
$\left[\left(-\frac{13}{5}; -\frac{12}{5}\right]$ или $\left[\frac{12}{5}; \frac{13}{5}\right)$, возможно, с	
исключением граничных точек	
В решении верно найден один из корней	1
Решение не соответствует ни одному из	0
критериев, перечисленных выше	
Максимальный балл	4

$$\sqrt{5x-3} \cdot \ln(3x-a) = \sqrt{5x-3} \cdot \ln(4x+a)$$

имеет ровно один корень на отрезке [0; 1]

Метод «Хорошего и плохого корня»

хороший корень – удовлетворяет ОДЗ и условиям задачи плохой корень – не удовлетворяет ОДЗ и условиям задачи

План решения:

- I. Найти корни
- II. Рассмотреть случаи:

1 случай: x_1 — хороший, x_2 — плохой;

2 случай: $x_1 -$ плохой, $x_2 -$ хороший;

Совпадение

3 случай: x_1 и x_2 - хорошие и совпадают

$$\sqrt{5x-3} \cdot \ln(3x-a) = \sqrt{5x-3} \cdot \ln(4x+a)$$

$$\sqrt{5x - 3}(\ln(3x - a) - \ln(4x + a)) = 0$$

$$\begin{cases}
5x - 3 = 0 \\
3x - a > 0 \\
4x + a > 0 \\
x \in [0; 1]
\end{cases}$$

$$\begin{cases} 3x - a = 4x + a \\ 3x - a > 0 \\ 5x - 3 \ge 0 \\ x \in [0; 1] \end{cases}$$

$$x_{1} = \frac{3}{5}; \quad \frac{3}{5} \in [0; 1]$$
$$3 \cdot \frac{3}{5} - a > 0$$
$$4 \cdot \frac{3}{5} + a > 0$$

$$4 \cdot \frac{3}{5} + a > 0$$

1)
$$-x = 2a$$
; $x_2 = -2a$

2)
$$-6a - a > 0$$
; $-7a > 0$; $a < 0$

3)
$$x \ge \frac{3}{5}$$
; $-2a \ge \frac{3}{5}$; $a \le -\frac{3}{10}$

4)
$$0 \le -2a \le 1$$
; $-\frac{1}{2} \le a \le 0$

$$\begin{cases} a < \frac{9}{5} & \\ a > -\frac{12}{5} & -\frac{12}{5} & \frac{9}{5} \end{cases}$$

$$\begin{cases} a \le -\frac{3}{10} \\ -\frac{1}{2} \le a \le 0 \end{cases}$$

$$-\frac{1}{2} - \frac{3}{10} \frac{0}{10}$$

$$x_1 -$$
хороший, $-\frac{12}{5} < a < \frac{9}{5}$

$$x_2 -$$
хороший, $-\frac{1}{2} \le a \le -\frac{3}{10}$

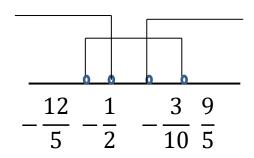
$$\sqrt{5x-3} \cdot \ln(3x-a) = \sqrt{5x-3} \cdot \ln(4x+a)$$

имеет ровно один корень на отрезке [0; 1]

$$x_1$$
 — хороший, — $\frac{12}{5} < a < \frac{9}{5}$

$$x_2$$
 — хороший, $-\frac{1}{2} \le a \le -\frac{3}{10}$

1 случай: x_1 — хороший, x_2 — плохой;



$$a \in \left(-\frac{12}{5}; -\frac{1}{2}\right) \cup \left(-\frac{3}{10}; \frac{9}{5}\right)$$

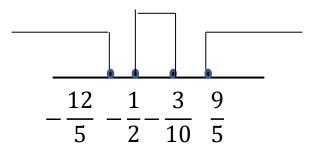
$$\sqrt{5x-3} \cdot \ln(3x-a) = \sqrt{5x-3} \cdot \ln(4x+a)$$

имеет ровно один корень на отрезке [0; 1]

$$x_1$$
 — хороший, — $\frac{12}{5} < a < \frac{9}{5}$

$$x_2$$
 — хороший, $-\frac{1}{2} \le a \le -\frac{3}{10}$

2 случай: x_1 – плохой, x_2 – хороший;



a ∈ Ø

$$\sqrt{5x-3} \cdot \ln(3x-a) = \sqrt{5x-3} \cdot \ln(4x+a)$$

имеет ровно один корень на отрезке [0; 1]

$$x_1$$
 — хороший, — $\frac{12}{5}$ < $a < \frac{9}{5}$

$$x_2 -$$
хороший, $-\frac{1}{2} \le a \le -\frac{3}{10}$

Совпадение

3 случай: x_1 и x_2 - хорошие и совпадают

$$\frac{\frac{3}{5} = -2a}{a = -\frac{3}{10} - \text{подходит}} - \frac{\frac{12}{5} - \frac{1}{2} - \frac{3}{10}}{\frac{9}{5}}$$

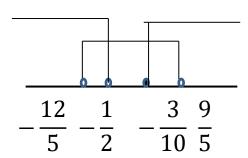
$$\sqrt{5x-3} \cdot \ln(3x-a) = \sqrt{5x-3} \cdot \ln(4x+a)$$

имеет ровно один корень на отрезке [0; 1]

1 случай:
$$a \in \left(-\frac{12}{5}; -\frac{1}{2}\right) \cup \left(-\frac{3}{10}; \frac{9}{5}\right)$$

2 случай: а $\in \emptyset$

3 случай:
$$a = -\frac{3}{10}$$



$$a \in \left(-\frac{12}{5}; -\frac{1}{2}\right) \cup \left[-\frac{3}{10}; \frac{9}{5}\right)$$

$\sqrt{5x-3} \cdot \ln(3x-a) = \sqrt{5x-3} \cdot \ln(4x+a)$ имеет ровно один корень на отрезке [0; 1]

Содержание критерия	Балл
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено	3
множество значений a , отличающееся от	
искомого конечным числом точек.	
С помощью верного рассуждения получены	2
все граничные точки искомого множества	
значений а	
Верно найдена хотя бы одна граничная	1
точка искомого множества значений а	
Решение не соответствует ни одному из	0
критериев, перечисленных выше	
Максимальный балл	4

Запись вебинара

https://my.mtslink.ru/46295935/1044473978/recordnew/1668940709